## MTH 307: Programming and Data Structures

## Practice Assignment I

1. What is the output produced by each of the following program fragments.
(a) $\operatorname{for}(i=5, j=i-1 ; i>0, j>0 ;--i, j=i-1)$ printf("\%d",i);
(b) for $(\mathrm{i}=10$; i >= 1; i /= 2);
printf("\%d", i++);
(c) $i=9384$;
do
\{
printf("\%d",i);
i /= 10;
\} while (i > 0) ;
(d) $i=1$;
while (i <= 128)
\{
printf("\%d",i);
i *= 2;
\}
(e) sum $=0$;
for (i $=0$; $i<10 ; i++$ )
\{
if (i \% 2) continue;
sum += i;
\}
2. Write C programs to execute the following tasks.
(a) Writing a function so that when an array a of length n is passed, the function will search for largest and smallest elements in a and store them in the variable pointed to be largest and smallest. For example,
void find_largest_smallest(int a[], int n, int *largest, int *smallest)
(b) Computing the sum of the elements of a two-dimensional array of numbers using pointer arithmetic. Please note that only one loop should be used.
(c) Reversing a string and determining whether it is a palindrome by using a pointer to keep track of array subscripting.
(d) Declaring a structure tag named complex with two arguments real and imaginary of type double for the following purposes.
(i) Passing a variable of complex type into separate functions for calculating and returning the inverse, modulus, and conjugate of a complex number.
(ii) Passing two variables of complex type into separate functions for adding, subtracting, multiplying, and dividing two complex numbers, and then returning resulting complex number of complex type.
(e) Declaring a structure tag named fraction with two arguments numerator and denominator of type long for the following purposes.
(i) Passing a variable of fraction type into a function for calculating and returning the resulting fraction in reduced form.
(ii) Passing two variables of fraction type into separate functions for adding, subtracting, multiplying, and dividing two fractions, and then return resulting fraction of fraction type in the reduced form.
